カテゴリー別アーカイブ: 測定器

ガンマ線: ADCのDNL補正(Sliding Scale Method)

チャージアンプの出力はADコンバータ(ADC)によりデジタル化されます。使っているADCはマイクロコントローラ(STM32F207VE)内蔵の12ビットADCです。一般にADCにはDNL(微分非直線性)と呼ばれる誤差がありますが、通常の用途ではあまり問題になりません。しかし、ガンマ線のスペクトルグラフを描く用途では顕著にその誤差が現れます。次の画像はDNLの補正をする前のCS137のスペクトルです。CS137_DNL補正なし(画像をクリックすると拡大できます。以下同じ)

この画像の一部分を拡大したのが次の画像です。CS137_DNL補正なし拡大このグラフを見ると、左半分では周期的にカウント数が変動しています。右側の全吸収ピークではカウント数が大きく上下しています。これらの不具合はADCの各ビットの電圧幅が一定でない事に起因します。良くあるのは隣合うビットで一方が幅が狭く、その隣のビットは幅が広い場合です。この場合ソフトである程度補正が可能です。その補正を行ったのが次の画像です。CS137_DNLソフト補正この補正で大分良くなりましたが限界があります。補正をより完全に行うにはハード的な対策が必要で、Sliding Scale Methodという方法があります。この方法はDAコンバータ(DAC)を回路に追加し、チャージアンプの出力とDACの出力をオペアンプで足し合わせて、AD変換し、変換されたデジタル値からDACの電圧を引くという方法です。DACの出力を0から数十テャンネル変化させれば色々な電圧幅のビットでサンプリングする事になり、結果的にDNLが目立たなくなります。この方法で補正したのが次の画像です。

CS137_DNLハード補正_この補正の効果は著しく、きれいなスペクトルが得られます。

 

ガンマ線: 走行データ(湾岸)

測定器(GeoGamma220)を車に載せて、走行テストを行いました。ルートは阪神間の海と山で、西宮周辺の湾岸と六甲山です。テストには、比較のため、TCS-172Bという福島ではデファクト的なサーベイメータでの測定値も取得するようにしました。写真の左側がTCS-172Bでシンチレータは1インチです。右側はGeoGamma220でシンチレータは2インチで、ガンマ線の計数率感度は理論的には8倍です。

IMG_0979

TCS-172Bからはフルスケールで10mVのアナログ電圧が出ていますので、その出力をGeoGamma220のアナログ入力に接続して、同時にデータをサンプリングしています。TCS-172Bの測定パラメータはレンジは0.3μSv/h、時定数は10秒で行いました。

湾岸を走行した結果を専用の表示ソフトで表示したのが次の図です。地図上の青の線が走行ルートで、下側のグラフがGeoGamma220の計数率(cpm)、右側のグラフがエネルギースペクトルです。下側のグラフを見ると値が3か所でドロップしているのが分かります。図をクリックすると拡大され変化しているのが良くわかります。

湾岸

この3か所が何故低くなっているのかは、計数率を色分けして地図にプロットすると分かります。それが次の図で、色は計数率が高いほど暖色系、低いほど寒色系です。

TCS172Bとの比較

この地図を見ると3か所、青色の部分があり、そこはいずれも橋の部分である事が分かります。表示ソフトではグラフをクリックするとその値に対応する地点が地図上に表示されますので、値が下がっているのは橋の上であるという確認ができます。

下側のグラフで赤の線はGeoGamma220の値で、青の線はTCS-172Bの値です。横軸は時間、縦軸は計数率で、両者が同じような位置に表示されるようにTCS-172Bの値は倍率をかけています。青のグラフを見ると、赤に比べ、値の変化がなだらかで、変化量も少なく、変化する位置が橋の位置とずれています。両者のグラフの違いは1点の測定に要する時間が青(TCS-172B)は10秒で、赤(GeoGamma220)は1秒である事が主な原因だと考えられます。TCS-172Bで10秒かかるのは、この地域での線量率が0.05μSv/h程度で1インチのシンチレータでは計数率が低く、1秒では値のばらつきが大きくなりすぎるからです。

橋の上でガンマ線が弱くなるのは、ガンマ線を発生している岩石や土から距離が離れるのと水による減衰のためだと考えられます。

 (小林一英)

 

ガンマ線: 測定器(GeoGamma220)の構成

測定器は、写真のように、センサ(画像右側の円筒形)と基板の2つから構成されます。この構成の測定器をGeoGamma220と呼ぶ事にします。

シンチと基板

1.センサ

センサの円筒の中は、先端に直径2インチ、長さ2インチのNaI(Tl)シンチレータが入っていて、それに密着してフォトマル(光電子増倍管)が配置されています。赤のケーブルは600~1200Vの高電圧の電源ケーブルで、黒のケーブルはシンチレータからの光がフォトマルにより電流に変換された信号のケーブルです。測定器名の220は2インチx2インチから来ています。

2.基板基板2

基板ではセンサに高電圧を供給し、フォトマルからの電流信号をデジタルに変換します。デジタル変換されたデータは、GPS受信機から得られた位置情報と共に、USBを通じて、ノートパソコンやタブレット、スマホに送る事ができます。この写真は試作1号機でUSBホスト機能はありませんが、現在製作中の2号機ではUSBホスト機能を組み込みます。そのホスト機能を使う事により、USBメモリにデータを保存したり、BluetoothモジュールやWifiモジュールを装着する事により、無線でデータを伝送できます。

(小林一英)